
i | Proceedings of the 50th International Computer Music Conference | Boston 2025

Hosted by Northeastern University, New England Conservatory, Berklee College of Music, Boston Conservatory
at Berklee and Emerson College, with special collaboration from the Massachusetts Institute of Technology (MIT)
Music Department and the MIT Media Lab’s Opera of the Future Group; the Central Conservatory of Music
(Beijing); and IRCAM (Paris) – Institut de Recherche et Coordination Acoustique/Musique (Institute for Research
and Coordination of Acoustic Music).

https://icmc2025.sites.northeastern.edu/

CURIOSITY • PLAY • INNOVATION
A 50th Anniversary Celebration of Creativity in Music, Science and Technology

BOSTON, MA USA I JUNE 8 – JUNE 14, 2025

23 | Proceedings of the 50th International Computer Music Conference | Boston 2025

ICMA 2025 Paper Award

Each year the ICMA recognizes the best paper submitted with the Best Paper Award. The top
scoring papers written by ICMA member are given toa panel elected by the ICMA Board, and a winner is
decided from among these top submissions.

ICMA BEST PAPER AWARD

Resonate: Efficient Low Latency Spectral Analysis of Audio Signals

Alexandre R. J. François

The Best Paper award entails guaranteed publication of an extended version
of the paper and an article in the Computer Music Journal.

Anthony Paul De Ritis
ICMA Research Coordinator
[Ex officio]

Victor Zappi
ICMC Boston 2025 Track Co-Chair

Akito van Troyer
ICMC Boston 2025 Track Co-Chair

Juan Parra
ICMA Board Member and Publications Coordinator

2025 ICMC BEST PAPER AWARD COMMITTEE

Douglas Keislar
Editor, Computer Music Journal

Tae Hong Park
ICMA Board Member

Henrik von Coler
ICMA Board Member

251 | Proceedings of the 50th International Computer Music Conference | Boston 2025

Resonate: Efficient Low Latency Spectral Analysis of Audio Signals

Alexandre R. J. François
Interactions Intelligence

alex@interactionsintelligence.org

ABSTRACT

This paper describes Resonate, an original low latency,
low memory footprint, and low computational cost algo-
rithm to evaluate perceptually relevant spectral informa-
tion from audio signals. The fundamental building block
is a resonator model that accumulates the signal contribu-
tion around its resonant frequency in the time domain, us-
ing the Exponentially Weighted Moving Average (EWMA).
A compact, iterative formulation of the model affords com-
puting an update at each signal input sample, requiring no
buffering and involving only a handful of arithmetic oper-
ations. Consistently with on-line perceptual signal anal-
ysis, the EWMA gives more weight to recent input val-
ues, whereas the contributions of older values decay ex-
ponentially. A single parameter governs the dynamics of
the system. Banks of such resonators, independently tuned
to geometrically spaced resonant frequencies, compute an
instantaneous, perceptually relevant estimate of the spec-
tral content of an input signal in real-time. Both memory
and per-sample computational complexity of such a bank
are linear in the number of resonators, and independent
of the number of input samples processed, or duration of
processed signal. Furthermore, since the resonators are
independent, there is no constraint on the tuning of their
resonant frequencies or time constants, and all per sam-
ple computations can be parallelized across resonators.
The cumulative computational cost for a given duration
increases linearly with the number of input samples pro-
cessed. The low latency afforded by Resonate opens the
door to real-time music and speech applications that are
out of the reach of FFT-based methods. The efficiency of
the approach could reduce computational costs and inspire
new designs for low-level audio processing layers in ma-
chine learning systems.

1. INTRODUCTION

This paper describes Resonate, an original low-latency, low
memory footprint, and low computational cost algorithm
to evaluate perceptually relevant spectral information from
audio signals. Resonate is particularly relevant in the con-
text of real-time, perceptually motivated signal analysis.
It could also reduce computational costs and guide new
designs for low-level audio processing layers in machine
learning systems.

Copyright: ©2025 Alexandre R. J. François . This is an open-access ar-
ticle distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

The next section provides context and motivation for a
different approach to spectral analysis of audio signals.
Section 3 describes the details of Resonate’s fundamental
building block, a resonator model that accumulates the sig-
nal contribution around its resonant frequency in the time
domain, using the Exponentially Weighted Moving Aver-
age. Section 4 demonstrates the use of banks of such res-
onators, independently tuned to geometrically spaced res-
onant frequencies, to compute an instantaneous, perceptu-
ally relevant estimate of the spectral content of an input
signal. The paper concludes with a summary of contribu-
tions and a list of online resources made available to en-
courage adoption in the wider community.

2. CONTEXT AND MOTIVATION

Most music and speech analysis applications count as a
major feature the frequency spectrum of the input signal
as a function of time, often represented as a spectrogram.
This information is typically obtained by computing the
Short Time Fourier Transform (STFT) over the signal, i.e.
a sequence of Fast Fourier Transforms (FFTs) of windowed
data frames, where the window slides forward through time,
usually with some overlap and shaping to avoid introduc-
ing discontinuities that would cause high-frequency arti-
facts. Established signal processing textbooks document
in detail the many variants and their properties of this ap-
proach, rooted in the FFT, see e.g. [1][2][3].

In the context of audio processing, the input is a real-
valued signal x(t) ∈ [−1, 1], regularly sampled at sam-
pling rate sr. The FFT algorithm efficiently computes the
Discrete Fourier Transform (DFT) of a portion of the sig-
nal, that is the spectrum value X(ωk) of input signal x for
each frequency band ω in the appropriate discrete truncated
Fourier expansion. Equation 1 shows the mathematical ex-
pression of the nth term of the DFT over a window of N
samples, where x(tn) is the amplitude of the input signal
at time tn. The power (squared magnitude) or magnitude
of the complex number X(ωk) captures the strength of the
term’s frequency in the input signal. Note that Equation
1 describes a dynamic system that oscillates with greater
amplitude at frequency fk = ωk

2π , namely a resonator of
resonant frequency fk.

X(ωk) =
N−1∑

n=0

x(tn)e
−iωktn (1)

Despite its legendary efficiency and the ubiquitous avail-
ability of hardware-accelerated implementations, the FFT
comes with constraints that make it less than ideal for per-
ceptually motivated and real-time audio processing appli-
cations.

252 | Proceedings of the 50th International Computer Music Conference | Boston 2025

First, computing an FFT requires buffering the input data.
In the context of real-time applications, this imposes an in-
herent lower bound on the minimal amount of delay in-
troduced by analysis computations. In the FFT computa-
tion, there is an inherent trade-off between frequency res-
olution and time precision, determined by the number N
of samples in the buffer and the signal’s sampling rate sr.
The minimum delay, without accounting for any compu-
tation, is the buffer duration d = N/sr. At audio frame
sizes of 128, 256 or 512 samples, at a sampling rate of
44100Hz, the minimum theoretical corresponding delays
amount to approximately 3ms, 6ms or 12ms respectively.
Human auditory perception is sensitive to a few millisec-
onds of latency [4]; in studio settings, musicians find laten-
cies above 10-12ms distracting. Real-time audio-to-MIDI
software such as Jam Origin’s MIDI guitar [5] or Vochlea’s
Dubler [6], whose algorithms and models are proprietary,
operate in constrained frequency range for specific instru-
ments. The typical recommended latency setting is 128
samples or less (2.9ms at 44100Hz sampling), but lower
latency comes at the cost of often prohibitively increased
CPU load.

Second, the FFT’s computational efficiency comes from a
very clever and elegant economy of scale, which nonethe-
less introduces extra costs in memory, and trade offs in
time and frequency accuracy. Specific applications often
require further processing to extract domain-relevant in-
formation that is not directly computed by the FFT. By
construction, the number of frequency bins in the FFT is
equal to the number of samples in the input frame. Be-
cause all frequency bins are processed from the same sig-
nal frame, the same trade off in frequency and time reso-
lution, dictated by sample rate and buffer length, applies
to all frequencies. Bin frequencies are linearly distributed
over the range defined by the sampling rate and the buffer
size. However, humans perceive audio frequencies on a
logarithmic scale [7]. For these reasons, music and speech
applications often rearrange data from the linearly spaced
frequency bins according to a mel-frequency scale [8] or
a log-frequency scale. The standard in music applications,
the Constant-Q Transform (CQT) [9] computes the signal’s
spectrum over geometrically spaced frequency bins, at dif-
ferent time scales in different parts of the spectrum. The
CQT can be computed efficiently from FFTs [10][11], but
the process results in increased memory and computation
costs and additional delays, incompatible with real-time
applications.

For example, Spotify’s Basic Pitch [12][13] model, which
performs audio-to-MIDI conversion with pitch bend detec-
tion, starts with a Constant-Q Transform of the input audio
signal, which is down-sampled to keep memory and com-
putational costs under control. Basic Pitch is not designed
for (and is incompatible with) real-time inference.

To avoid these trade-offs, Resonate builds on a compu-
tationally efficient resonator model that does not require
buffering. Although developed independently, Resonate
shares some design principles and properties with the Slid-
ing Windowed Infinite Fourier Transform (SWIFT) algo-
rithm [14].

3. RESONATOR MODEL

Resonate’s fundamental building block is a resonator model
that accumulates the signal contribution around its reso-
nant frequency in the time domain, using the Exponentially
Weighted Moving Average (EWMA) [15], also known as
a low-pass filter in signal processing. Consistently with
on-line perceptual signal analysis, the EWMA gives more
weight to recent input values, whereas the contributions of
older values decay exponentially. A single parameter gov-
erns the dynamics of the system. The EWMA is computed
online for each input sample, requiring no buffering and
involving only a handful of arithmetic operations.

The resonator, characterized by its resonant frequency
f = ω

2π , is described by a complex number R whose am-
plitude captures the contribution of the input signal com-
ponent around frequency f . Equation 2 describes the iter-
ative update formulation for R(ω, t), where ∆t = 1/sr is
the sample duration, and α ∈ [0, 1] is a constant parame-
ter that dictates how much each new measurement affects
the accumulated value. This formula computes a complex
quantity that is analogous (but not equal) to X(ω) in Equa-
tion 1.

R(ω, t) = (1− α)R(ω, t−∆t) + αx(t)e−iωt (2)

The term e−iωt in Equation 2 is a complex number whose
amplitude, phase and angular frequency ω are fixed (this is
known as a phasor), and whose values can be computed
iteratively, as described in Equation 3.

e−iωt = P (t) = P (t−∆t)e−iω∆t (3)

Substituting in Equation 2 yields a purely iterative ex-
pression for the resonator model, shown in Equation 4.

R(ωk, t) = (1−α)R(ωk, t−∆t)+αx(t)P (t−∆t)e−iω∆t

(4)
Overall the algorithm for the resonator state update for

each input sample x comes down to the rules shown in
Equation 5.

P ← Pe−iω∆t

R← (1− α)R+ αxP
(5)

The two complex numbers P and R capture the full state
of the resonator. Updating the state at each input signal
sample only requires a handful of arithmetic operations.
Calculating the power and/or magnitude is not necessary
for the update, and can be carried out only when required
by the application, relatively efficiently as well.

The theoretical minimal delay introduced is limited by
the input signal’s sampling rate, as a value can be obtained
for each sample. At a sampling rate of 44100 Hz, the sam-
ple duration is 22.7µs. The time added by the update and
power or magnitude calculations on modern hardware will
typically be of the same order as, or negligible with re-
spect to sample duration. These numbers are several orders
of magnitude smaller than those regularly encountered in
FFT-based methods, and are compatible with real-time au-
dio signal analysis-based music applications.

3.1 Dynamics

The dynamic system described by Equation 2 when the in-
put signal x is a sinusoid of frequency f (resonator’s reso-
nant frequency) admits an attractor point Rf whose phase

253 | Proceedings of the 50th International Computer Music Conference | Boston 2025

Figure 1. Trajectory in power-phase space of the response to a sinusoidal
step signal tuned to the resonator’s resonant frequency. The trajectory
starts in the lower left corner and stabilizes around attractor point [0.25,
0.0]

is that between the resonator and the input signal’s sinu-
soids, and whose magnitude is the integral of a squared
sinusoid (from the product of the resonator’s and the input
signal’s), that is, 0.5 under our assumptions, and 0.25 for
the power (squared magnitude). Figure 1 shows the trajec-
tory in power-phase space of the response to a sinusoidal
step signal tuned to the resonator’s resonant frequency.

The single parameter α dictates how much each new mea-
surement affects the accumulated value, and therefore how
quickly the resonator adjusts to a sustained change in the
input signal (time resolution). In data analysis applica-
tions, this parameter is usually set according to domain-
or data-dependent heuristics. As α regulates the dynamics
of the system, it is useful to relate it to a time quantity to
formulate a suitable heuristic.

By definition, the time constant τ of an exponential mov-
ing average is the amount of time for the smoothed re-
sponse of a unit step function to reach 1 − e−1 ≈ 62%
of the original signal. Equation 6 gives the relationship be-
tween this time constant and the smoothing factor α, with
∆t the sampling time interval of the discrete time imple-
mentation.

α = 1− e−∆t/τ

τ = − ∆t

ln(1− α)
(6)

In the Resonate model, the time constant controls both
time and frequency resolution, and should therefore be a
function of the resonator’s resonant frequency. Intuitively,
the time constant should be larger for lower frequencies as
values need to be accumulated over a longer period of time
to increase frequency resolution. Consequently, it seems
reasonable to set the time constant to a multiple of the res-
onator’s resonant cycle duration. Practically, the heuristic
τf = log(1+f)

f yields reasonable results across resonant
frequencies in the range of interest (see Figure 3 below).
Substituting τ in 6 gives Equation 7.

αf = 1− e−∆t f
log(1+f) (7)

As illustrated in Figure 2(a), the power of the resonator
oscillates around the steady state value. Applying the EMWA
with the same time constant α to the complex R from
Equation 5, yields a stabilized value R̃ as shown in Equa-
tion 8. Figure 2(b) shows the smoothed power response
over time of three resonators tuned at resonant frequencies
of different orders of magnitude, to a sinusoidal step signal
tuned to the resonator’s resonant frequency. Figure 2(c)
shows the smoothed steady state power response of three
resonators tuned at resonant frequencies of different orders
of magnitude, to a step sinusoidal signal tuned at various
frequencies across the range of interest.

R̃← (1− α)R̃+ αR (8)

Informal experiments suggest that the model is robust
with respect to specific values of α: the behavior of the
resonator remains consistent around values with the same
order of magnitude.

3.2 Phase

When the input signal’s frequency is close to the resonator’s
resonant frequency, the system oscillates around the at-
tractor point Rf with heightened but non-maximal aver-
age power. In this mode, the phase between input signal
and resonator carries significant information. The com-
puted phase between the input component and that of the
resonator constantly shifts at a rate proportional to the dif-
ference in wavelength between the signal’s frequency and
the resonant frequency. This is because the instantaneous
interpretation of a slightly shorter or longer wavelength in
the input signal is identical to an instantaneous phase shift
(aperture effect). Equation 9 expresses the actual signal
frequency f ′ from the phase shift ∆φ over duration ∆T .

f ′ = f − ∆φ

2π∆T
(9)

Possible applications include a tuning systems which pro-
vides feedback to a user attempting to manually tune an
instrument to match the resonant frequency of a resonator,
and an adaptive resonator that can track the possibly evolv-
ing frequency of a simple input signal, provided the initial
tuning is close enough to the starting signal frequency.

Assuming a signal source of known fixed frequency f ,
the Doppler shift in frequency f ′ measured at an observer
(microphone) gives the relative velocity v of the source and
the observer. Equation 10 gives the mathematical formula
for v, as a function of f , f ′ and the speed of sound c.

v = c
f ′ − f

f
(10)

Audio signal spectral analysis applications require more
than a single resonator, as explored in the next section.

4. SPECTRAL ANALYSIS

4.1 Resonator bank

The resonator model introduced above is particularly suit-
able for building banks of independently tuned resonators,
similar in principle to banks of non-linear band-pass filters.

254 | Proceedings of the 50th International Computer Music Conference | Boston 2025

(a)

(b)

(c)

Figure 2. (a) Power response over time to a sinusoidal step signal tuned to the resonator’s resonant frequency. (b) Smoothed power response over time to
a sinusoidal step signal tuned to the resonator’s resonant frequency. (c) Smoothed steady state power response to a step sinusoidal signal tuned at various
frequencies across the range of interest. Sampling rate: 44100Hz

The resonators are independent, therefore there is no ex-
ternal constraint on the tuning of their resonant frequen-
cies or time constants. Both memory and per-sample up-
date computational complexity of such a bank are linear in
the number of resonators, and independent of the number
of input samples processed or duration of processed sig-
nal (or portion thereof). Because update computations for
each resonator are independent, per-sample computations
can be parallelized to further reduce computation time and
therefore reduce latency, for example by taking advantage
of Single Instruction Multiple Data (SIMD) architectures
where available. The cumulative computational cost for a
given signal duration increases linearly with the number of
input samples processed.

In the context of audio processing, the frequency range
of interest is typically 20-20000Hz. Choosing a resonator
bank makeup that emulates the geometrically spaced fre-
quency bins of the CQT yields results directly relevant to
human auditory perception and provides grounds for com-
parison with an established spectral analysis algorithm.

Figure 3 shows the response (power at steady state) from
a bank of 112 resonators tuned to geometrically spaced
frequencies, to sinusoidal step signals of various frequen-
cies spanning the range of interest. The graph shows that
the heuristic established for the resonators’ time constants
produces a reasonably regular and uniform coverage of the
frequency range. Note that the resonator’s time constants
could be learned, or at least tuned, to better reflect a spe-
cific data corpus and/or capture pipeline (e.g. microphone
response across the frequency range).

The graph suggests a large amount of overlap in the re-
sponse of the 112 resonators in the bank. Such redundancy
could make for a system that is highly robust to decima-
tion. Some applications, on the other hand, may not require
such a tight coverage of the frequency range of interest,
leading to further reduction in memory and computational
costs.

4.2 Spectrogram

Spectral information as a function of time is typically pre-
sented graphically in the form of a spectrogram. Figure 4
shows the spectrograms of a short musical excerpt (electric
piano) of duration 11.15 s (491904 samples at 44100Hz),
computed from the CQT and from Resonate. Both spec-
trograms were plotted in a Python environment using Li-
brosa’s [16] specshow function. The CQT implementa-
tion, also from Librosa, is based on [11]. In the spectro-
grams, the vertical axis represents frequency, so that each
row of the image corresponds to a frequency bin for the
CQT and to a resonator for Resonate. To facilitate compar-
ison, the number of resonators is the same as the number
of CQT frequency bins and the resonator’s resonant fre-
quencies correspond to the bin frequencies. The horizontal
axis represents time. For the CQT, the hop length deter-
mines the duration of each slice of time (image column),
in this case 512 samples (about 11.6ms at 44100Hz). The
color value at each pixel represents the power (in decibels)
in the input signal at the corresponding frequency over the
time slice, relative to the maximum power over the whole

255 | Proceedings of the 50th International Computer Music Conference | Boston 2025

Figure 3. Response from a tuned resonator bank to sinusoidal step signals
of various frequencies across the range of interest. The bank comprises
112 resonators tuned to geometrically spaced frequencies from 32.7Hz to
19910.18Hz, with 12 resonators per octave. The input signal sampling
rate is 44100Hz.

excerpt. The color map used here assigns brighter colors
to higher power. The Resonate spectrogram similarly plots
the power (in decibels) computed from the resonators. For
direct comparison with the CQT-based plot, here each col-
umn of the spectrogram shows the state of the resonator
bank taken every 512 samples. As expected, the images
are not identical, yet seem to capture similar features of
the input signal.

On an Apple Mac mini M1 (2020), the CQT computa-
tion for this musical segment takes approximately 0.05s to
0.1s. The iterative nature of the Resonate algorithm makes
it difficult to vectorize across samples. A Python imple-
mentation that loops over the samples to compute the spec-
trogram takes approximately 1.7s. A C++ implementation
that loops over the samples more efficiently and leverages
the Accelerate framework to vectorize updates per sam-
ple across resonators, called from Python under the same
conditions, takes on the order of 0.05s. Table 1 shows
CQT and Resonate computation times with various hop
lengths. CQT computation times increase significantly as
hop length decreases, while the corresponding Resonate
computation times remain essentially constant. As already
pointed out, Resonate’s memory footprint is much lighter
than the CQT’s, and only grows linearly with the number
of oscillators. Naturally, when computed and stored of-
fline, the output size grows linearly with the number of
time slices (inversely proportional to the hop length).

Resonate computes spectrogram values at the input sam-
pling rate with delays easily compatible with real-time ap-
plications on modern hardware, with a time resolution that
is out of reach of FFT-based methods such as the CQT.
Figures 5, 6 and 7 illustrate the level of detail afforded by
Resonate spectrograms. Figure 5 shows spectrogram de-
tails of solo trumpet music, revealing spectral characteris-
tics of the instrument at a high temporal resolution. Figure
6 shows spectrogram details of rock music excerpt with
strong, well defined rhythmic patterns clearly visible. Fig-
ure 7 shows spectrogram details of a voice recording (short
reading excerpt). Resonate spectrogram data could pro-
vide richer information to AI models at reduced memory
and computational costs. The efficiency of the approach

hop length Computation time (s)
CQT Resonate

512 0.05 0.05
256 0.06 0.05
128 0.08 0.05
64 0.2 0.05
32 0.5 0.05
16 1.2 0.05
8 4.5 0.05
4 80 0.07
2 * 0.08
1 * 0.1

Table 1. Approximate running times (in s) for CQT and Resonate compu-
tations for the same short musical excerpt as in Figure 4 (491904 samples
at 44100Hz), with various hop lengths.

could also inspire new designs for deep learning models
suitable for inference from time sampled data in interac-
tive use cases, where latency is critical and only present
and past data are available.

The Oscillators app [17] demonstrates real-time Resonate
spectrograms and Resonate-powered audio features in an
interactive setting. The Resonate Youtube playlist [18] fea-
tures video captures of real-time demonstrations.

4.3 Inverse and synthesis

The Resonate model is invertible, up to numerical approx-
imations. Inverting Equation 2 (and the additional smooth-
ing step), the successive sample values of the original sig-
nal can be recovered, at the original sampling rate, from
the successive states of any single resonator, as shown in
Equation 11.

R(ω, t) =
R̃(ω, t)− (1− α)R̃(ωk, t−∆t)

α

x(t) = Re(
(R(ω, t)− (1− α)R(ωk, t−∆t))

α
eiωt)

(11)
From a synthesis perspective, since Resonate captures

spectral and phase information, the successive states of a
bank of resonators (or a subset thereof) can be used to gen-
erate an audio signal at the same sampling rate as the orig-
inal’s, in a process akin to additive synthesis. Equation 12
shows a possible formula for a synthesized signal, up to a
proportionality constant K that depends on the set of res-
onators’ coverage of the frequency range.

r(t) = KRe(
∑

ω

R̃(ω, t)eiωt) (12)

This approach does not revert the effects of the EWMAs,
so comparing the resulting signal and the original signal
shows both temporal and numerical discrepancies. The
signals should however exhibit similar patterns. Prelim-
inary informal experiments on musical excerpts suggest
that the signal synthesized from a resonator bank with ap-
propriate frequency range coverage exhibits audio features
similar to those of the original input signal. Experiments
also suggest that a much smaller number of oscillators dis-
tributed across the frequency range of interest is sufficient

256 | Proceedings of the 50th International Computer Music Conference | Boston 2025

Figure 4. Spectrogram of a short musical excerpt (first 11.15s of Who’s Loving You by The Jackson 5; electric piano) computed from the constant-Q
transform (CQT) and from a Resonate implementation (spectrogram display and CQT from Librosa, sampling rate: 44100 Hz, hop length: 512 samples,
84 frequency bins from 32.7 Hz to 3950.7 Hz).

Figure 5. Resonate spectrogram details from Librosa’s trumpet sample. Sampling rate 22050Hz.

257 | Proceedings of the 50th International Computer Music Conference | Boston 2025

Figure 6. Resonate spectrogram details of a short excerpt from the Peter Gunn Theme by The Blues Brothers. Sampling rate 41000Hz.

Figure 7. Resonate spectrogram details from Librosa’s libri3 voice recording sample (reading excerpt). Sampling rate 22050Hz.

258 | Proceedings of the 50th International Computer Music Conference | Boston 2025

to capture salient features of music signal. Such robust-
ness to decimation of resonators seems consistent with that
of human perception. It could also point to further poten-
tial savings in memory and compute by using banks with
a smaller number of resonators in the low-level audio pro-
cessing layers of deep learning systems, at least for some
classes of applications.

5. SUMMARY AND FUTURE WORK

This paper described Resonate, an original low latency,
low memory footprint, and low computational cost algo-
rithm to evaluate perceptually relevant spectral informa-
tion from audio signals. The model builds on a resonator
model that accumulates the signal contribution around its
resonant frequency in the time domain using the Exponen-
tially Weighted Moving Average. A compact, iterative for-
mulation of the model affords computing an update at each
signal input sample, requiring no buffering and involving
only a handful of arithmetic operations. Banks of such res-
onators, independently tuned to geometrically spaced res-
onant frequencies, compute an instantaneous, perceptually
relevant estimate of the spectral content of an input signal
in real-time. Both memory and per-sample computational
complexity of such a bank are linear in the number of res-
onators, and independent of the number of input samples
processed, or duration of processed signal. Furthermore,
since the resonators are independent, there is no constraint
on the tuning of their resonant frequencies or time con-
stants, and all per sample computations can be parallelized
across resonators. The cumulative computational cost for a
given duration increases linearly with the number of input
samples processed.

Resonate is particularly relevant in the context of real-
time, perceptually motivated signal analysis, where its com-
putational efficiency and low latency open the door to real-
time music and speech analysis applications impossible
with FFT-based methods. Furthermore, the efficiency of
the approach could reduce computational costs and guide
new designs for low-level audio processing layers in ma-
chine learning systems.

This paper described the principles of Resonate. Much
work lies ahead to refine and validate the model and ex-
plore its potential use in existing and new applications.
To encourage adoption in the wider community, the open
source module noFFT [19] provides python and C++ im-
plementations of Resonate functions and Jupyter notebooks
with the code used to generate the figures in the paper. The
Swift package Oscillators [20] offers reference im-
plementations in Swift and C++.

6. REFERENCES

[1] J. O. Smith, Spectral Audio Signal Processing.
ccrma.stanford.edu/j̃os/sasp, 2011.

[2] M. Vetterli, J. Kovacevic, and V. K.
Goyal, Foundations of Signal Processing.
www.fourierandwavelets.org, 2014.

[3] J. Kovacevic, V. K. Goyal, and M. Vet-
terli, Fourier and Wavelet Signal Processing.
www.fourierandwavelets.org, 2013.

[4] H. Wallach, E. B. Newman, and M. R. Rosenzweig,
“The Precedence Effect in Sound Localization,”
The American Journal of Psychology, vol. 62,
no. 3, pp. 315–336, 1949. [Online]. Available:
www.jstor.org/stable/1418275

[5] “MIDI Guitar.” [Online]. Available: www.jamorigin.
com

[6] “Dubler.” [Online]. Available: vochlea.com

[7] R. Rasch and R. Plomp, “1 - The Perception of Musi-
cal Tones,” in Psychology of Music, ser. Cognition and
Perception, D. Deutsch, Ed. New York: Academic
Press, 1982, pp. 1–24.

[8] S. Stevens and J. Volkmann, “The Relation of Pitch to
Frequency; A Revised Scale,” The American Journal
of Psychology, vol. 53, pp. 329–353, 01 1940.

[9] J. C. Brown, “Calculation of a Constant Q Spectral
Transform,” Journal of the Acoustical Society of Amer-
ica, vol. 89, pp. 425–434, 01 1991.

[10] J. C. Brown and M. S. Puckette, “”An efficient algo-
rithm for the calculation of a constant Q transform”,”
Journal of the Acoustical Society of America, vol. 92,
pp. 2698–2701, 11 1992.

[11] C. Schörkhuber and A. Klapuri, “Constant-Q trans-
form toolbox for music processing,” Proc. 7th Sound
and Music Computing Conf., 01 2010.

[12] R. M. Bittner, J. J. Bosch, D. Rubinstein, G. Meseguer-
Brocal, and S. Ewert, “Basic Pitch,” 2024. [Online].
Available: github.com/spotify/basic-pitch

[13] ——, “A Lightweight Instrument-Agnostic Model for
Polyphonic Note Transcription and Multipitch Estima-
tion,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), Singapore, 2022.

[14] L. L. Grado, M. D. Johnson, and T. I. Netoff, “The
Sliding Windowed Infinite Fourier Transform [Tips &
Tricks],” IEEE Signal Processing Magazine, vol. 34,
no. 5, pp. 183–188, 2017.

[15] NIST/SEMATECH e-Handbook of Statistical Methods,
6.4.3.1. Single Exponential Smoothing. NIST, re-
trieved January 2025.

[16] B. McFee et al., “librosa/librosa: 0.10.2.post1,” May
2024. [Online]. Available: doi.org/10.5281/zenodo.
11192913

[17] A. R. François, “Oscillators App
(iOS/iPadOS/MacOS),” 2025. [Online]. Available:
www.alexandrefrancois.org/Oscillators

[18] ——, “Resonate Playlist,” YouTube, 2025. [Online].
Available: www.youtube.com/playlist?list=PLVcB
ABiKC cbemxXUUJXHAQsHEHxPOP1

[19] ——, “noFFT,” 2025. [Online]. Available: github.
com/alexandrefrancois/noFFT

[20] ——, “Oscillators (Swift Package),” 2025. [Online].
Available: github.com/alexandrefrancois/Oscillators

